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Abstract— This paper work presents a novel individual and 

Hybrid MGA and IGWO was utilized to develop 
FACTS-controlled optimization model for improvement of bus 
voltage profiles. The algorithm simultaneously solved the 
objective problem and tunes as it searches for FACTS location 
and sizes. Objective function constrained optimal power flow 
(CPF) with FACTS devices for TTC within real and reactive 
power generation limits, voltage limits, line flow limits, and 
FACTS devices operation limits. Thyristor-Controlled Series 
Capacitor (TCSC) parameters has been optimized for the 
research and the work has been successfully carried on 
MATLAB platform using IEEE 30-bus test bus systems. Power 
system processes and parameters can be optimized using 
artificial intelligence techniques like artificial neural networks 
and genetic algorithm alongside power electronics based 
Flexible AC Transmission Systems (FACTS) devices. FACTS 
normalize voltage or control the power that is either added into 
or absorbed from the system. They enhance the overall grid 
capacity and performance. They also increase the 
dependability and efficiency of power systems. Apart from 
alleviating power transients, FACTS provide greater system 
real and reactive control augmentation. 
 

Index Terms— Augmentation, Artificial intelligence, Bus, 
Normalize, Genetic algorithm grid capacity reactive control. 

I. INTRODUCTION 
  Currently, electrical energy utilities run on constraints of 
complex interconnectivity and operation limits therefore 
forcing them to operate their existing infrastructure at a 
higher effectiveness. There is an interest in better utilization 
of the existing power systems to control power flow, 
improve system dynamics, and increase system reliability by 
using Flexible AC Transmission Systems (FACTS). 
Besides, FACTS devices can be used to increase power 
system transfer capability [1]. Wide variety of algorithms 
have been developed for calculating TTC, boosting voltage 
profiles, minimizing generation costs and loss reduction. 
Optimization of system parameters can be implemented by 
techniques such as sequential quadratic programming 
(SQP), Genetic Algorithm, Artificial Bee Colony Algorithm, 
Particle Swarm optimization and transfer based security 
constrained optimal power flow (TSCOPF) method. These 
methods require an objective function to get the optimal 
solution. [2]. Under constantly increased electricity 
demands, it is becoming more critical to boost the system 
capability such that more power transfers, maintenance of 
voltage stability margins and losses are minimized with less 
network expansion investment. In the place of building new 
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supply substations or lines, proper installation and 
optimization, with Artificial Intelligence (AI), of 
transmission as well as generation units can make power 
networks billet more from source end to load [3]. With 
application of optimized FACTS devices, the power can be 
flown through the chosen routes with consideration on an 
increase in transmission line capability and improvement for 
the security of power system. UPFC, for instance, is very 
versatile FACTS controllers [4]. Enhancement of total 
transfer capability, minimization of power losses and 
improvement of voltage profiles in overloaded transmission 
network ensures that the system is stable and efficient even 
under stressed conditions. AI methods like genetic 
algorithm, fuzzy-logic, artificial bee colony algorithm and 
particle swarm optimization are applied to determine the 
optimum ratings of FACTS devices for simultaneous 
minimization of power loss and voltage profile 
enhancement, improved line flows and loss therefore 
boosting of available power transfers. 
 

1. METHODOLOGY 
 

1.1 Problem formulation  
The problem will be formulated to form the maximization 
the viable TTC while making observation on voltage 
profiles and system loss reduction. The optimization 
problem can be augmented simultaneously subject to the 
various equality and inequality constraints. The objectives 
minimization of voltage stability index, generation cost, real 
power loss and maximization the power that can be 
transferred from a generators source area to loads in a sink 
area. The formulation will cover the TTC base case (without 
FACTS controllers), TTC with UPFC and TTC with TCSC. 
TTC is the maximum power transfer without any line 
thermal overload, violation of voltage limits voltage 
instability or transient instability; the core constituent of the 
ATC. It reliant on system base case operating conditions, 
system operating limits, configuration of the system 
network, network contingencies among other constraints. 
TTC can be accomplished using Repeated Power Flow, 
Continuation Power Flow and Security Constrained Power 
Flow. The Security Constrained Power Flow has been 
utilized for this study.  
 
1.2 Base case CPF (without FACTS controllers)  
To determine TTC, the objective is to maximize the power 
transfer between two areas without any violation of thermal, 
voltage and stability limits. A standard TTC problem 
formulation can be written as shown in the following 
equation: -  

                                                            (1)                                                                                                  
The above is subject to: - 
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                                                       (6)                                                              

Where:    ND_SNK: Number of load buses in the sink area 
and PDi is the real load at bus i. The other equations are the 
power flow constraints and the following equations 
represent real and reactive power generation bounds, the 
second last equation stands for the thermal limitations and 
the last equation denotes the voltage level constraint. 
 
1.3 CPF with TCSC FACTS Controller 
The modified TTC function with TCSC FACTS controller, 
Pr for maximizing the TTC [44] of power transactions 
between source and sink areas in power system is given as: 

                                                            (7)                                                                                          
Where:    ND_SNK: Number of load buses in the sink area 
and PDi: Real load at bus i 
 
This is subject to the constraints below which are simply the 
real and reactive power balance equations with TCS FACTS 
controller at all the bus bars. The equality constraints with 
TCSC controller are formulated as follows: - 
 

                                                                                       (8) 
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                                                            (17)                                                                                                    

                                                  (18)                                                                                            
 
Where:  
PGi and QGi are real and reactive power generation at bus i 
PDi and QDi are real and reactive loads at bus i 
PPi(αPk) and QPi(αPk) are the injected real and reactive 
power of TCSC at bus i 
Vi and Vj are voltage magnitude at buses i and j 
Yij(Xs) and θij(Xs) are the magnitude and angle the ijth 
element in admittance matrix with TCSC  
δi and δj are the voltage angles at bus i and j 

 are lower and upper limits of real power 
generated at bus i 

 are lower and upper limits of real voltage 
magnitude at bus i 

 are the minimum and maximum range of tap 
changing transformer  

 is the vector reactance of TCSC 
N is the total number of buses 

NG is the number of generators. 
 NL is the number of branches, and  
ND _ SNK is the number of load buses in sink area. 
 
1.4 Proposed Optimization Techniques  

 
a. Modified Genetic Algorithm  

The Modified GA is a stochastically population-based 
technique introduced by Storm and Price in 1997. MGA 
belongs to the family of genetic algorithms (GA). MGA 
performs just like a GA and it has the following operation: 
initialization, mutation, crossover, and selection. In MGA, 
individuals are abridged to a chromosome that programs the 
control variables of the problem. The strength of an 
individual is the objective function (fitness) that must be 
optimized. A random s function might produce the initial 
population size. After the start, consecutive populations are 
generated using the GA iteration process, which 
encompasses three basic functional operators: reproduction, 
crossover and mutation. Lastly, the population stabilizes, 
because no better individual can be found. When algorithm 
converges, and most of the individuals in the population are 
almost identical, it represents a sub-optimal solution. These 
parameters are vital to determine the optimization properties 
of the algorithm. To apply MGA to solve a specific 
problem, one has to define the solution representation and 
the coding of control variables. The optimization problem 
here is to use Constrained Power Flow (CPF) to find the 
Total Transfer Capability for various MGA-tuned FACTS 
devices to determine optimal locations and compensation 
sizes. The basic operation of MGA is stated as follows: - 
 

• Initialization  
The initialization procedure will select the initial population 
within the range of the control variables with a random 
number generator. The user can postulate the population 
number in this procedure. 
 

• Selection  
This is a key reproduction process in which individual 
chromosomes are derived according to their objective 
function (fitness); it is an artificial operation that mimics the 
version of the Darwinian procedure of natural selection. The 
first stage of the reproduction process is to select 
chromosomes for coupling. The roulette wheel selection is 
applied here. It is seen that stochastic universal sampling 
exhibits better convergence.  
Crossover  
Crossover is one of the key characteristics of GA that make 
them dissimilar from other algorithms. Its focal objective is 
to recombine blocks on diverse individuals to make a new 
block of generations as shown in the equations below: -  

                                                        (19) 
                                                           (20) 

                                                 (21) 
where x, y are the two parents, x’, y’ are their two 
descendants. µ1 is obtained by a uniform arbitrary number 
generator between the range (0~l). 

• Mutation  
Mutation is used to present some sort of artificial divergence 
in the population to avoid untimely convergence to local 
optimum. An arithmetic mutation operation that has 
demonstrated positive result in a number of studies is 
dynamic or non-uniform mutation is designed for 
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fine-tuning aimed at achieving a high degree of accuracy. 
For a given parent x, if the gene xk is selected for mutation, 
then the resulting gene is selected with equal probability 
from the two selections: - 

b                                (22) 

b                                 (23) 
Where r is a uniform arbitrary number selected between the 
range (0,1), t is the existing generation number, T is the 
maximum number of generations and b is a parameter 
determining the degree of lack of consistency. The amount 
of mutation reduces as the number of generations increases. 
 

• Replacement of population  
Two population replacement methods, non-overlapping 
generations and steady-state replacement. When using 
non-overlapping generations, a generation was entirely 
replaced by its progeny created through selection, crossover 
and mutation. It is conceivable for the offspring to be worse 
than their parents and some fitter chromosomes may be lost 
from the evolutionary process. Steady-state replacement is 
used to go over this problem. In this course, a number of 
offspring are created and these replace the same number of 
the least fit individuals in the population hence providing 
better convergence.  
 

b. Improved Grey Wolf Optimization (IGWO) 
Algorithm  

IGWO a new swarm intelligence algorithm based on the 
firmly organized scheme and hunting behavior of grey 
wolves, which includes three parts: tracking prey, 
surrounding prey, attacking prey, and other optimization 
processes. Its summarized as follows: -  

 
Figure 1: Grey wolf pack ranking 
 

• Wolf ranking Hierarchy  
Grey wolves mainly animate in groups, and the cluster 
follows the social pecking order, as shown in figure shown 
above. It can be seen from the figure that the α Wolf is the 
leader of the social group and is mainly accountable for 
making decisions about actions such as predation, while the 
rest of the wolves obey the command of the α Wolf. Level 
2: β Wolf, submitting and supplementary to the α Wolf, can 
control all the wolves except for α Wolf. Level 3: δ Wolf, 
obeying the arrangement of α and β Wolf at the same time, 
can rule the rest of the residual wolf pack, and rank ω is the 
lowermost level. The general predation behavior of grey 
wolves is led by α wolves, and the task of other wolves is to 
surround the prey. 

• Surrounding prey 
Grey wolves surround their prey as they hunt. The 
mathematical model of encircling prey is as follows: - 
D = | C. Xp (t) - X (t) |                                                      (24) 
where X(t) represents the position of grey wolves, and Xp 
represents the position vector of prey: 

X (t +1) =Xp - A·D                                                       (25) 
where A and C represent coefficient vectors, and the 
calculation formula is as follows: 
A = 2a·(r1-1)                                                                     (26) 
C=2r·t                                                                                (27) 
where t denotes the current number of iterations, and a = 2 
(1-t/Tmax) denotes that the variable reduces linearly from 2 
to 0, r1, r2 [0,1] during the iteration process. 
 

• Hunting prey 
Grey wolves can identify prey and surround it. The search 
process is α Wolf commands and leads, β and δ sometimes, 
they will take part in hunting. Hypothesis α, β and δ. The 
wolf can have a deeper understanding of the potential 
location of prey, and accordingly, during the algorithm 
iteration process, save the best location of the three wolves 
in the current population, and mark them as α, β and δ. 
Then, according to the position of the three parameters ϖ 
Wolf individuals are updated, and the mathematical model is 
thus developed.  
 
1.5 Hybrid MGA and IGWO Algorithm  
The IGWO algorithm has been successfully applied in the 
fields of job shop scheduling, power system analysis, 
economic forecasting, etc. Yet, like other algorithms, the 
IGWO is prone to fall into the local optimum and has a very 
slow convergence speed. Therefore, in order to improve the 
global convergence and convergence speed, this research 
has utilized MGA. GWO's searching ability is based on two 
principles: exploration and exploitation. Exploration refers 
to the process of exploring new areas or mathematically, the 
process of looking for a solution as much as possible in a 
search space to prevent local optimum stagnation. On the 
other hand, exploitation refers to looking in the same 
direction in greater depth or mathematically, searching for a 
solution with high precision. Using the GWO algorithm to 
find the global optimum with high efficiency necessitates 
achieving the proper balance between exploration and 
exploitation. As compared to other swarm intelligent 
techniques, GWO algorithms perform well in finding the 
global optimum for the high-dimensional problem, but not 
so well in finding the global optimum for low-dimensional 
problems. Normal there is no guarantee that GWO will 
identify global minima, it is conceivable that it will stick 
with local minima and calculate corresponding angles that 
do not eliminate the third harmonic. To mitigate this issue, a 
donor vector from a MGA like the differential evolution 
technique is used, which adds randomness to the GWO 
technique and allows it to escape out of the local optimum 
and look in a new direction for the global optimum. Since 
the DE technique is based on accomplish random 
initialization, it outdoes finding the global optima, but it has 
a limitation in that it lacks a parameter that is directly related 
to algorithm convergence, so the speed of convergence is 
very slow and provides power oscillation around the global 
optima. As a result, the flaw in one approach is offset by 
another method. Therefore, a new algorithm called 
improved gray wolf optimization and differential evolution 
(IGWO-MGA) is proposed in this thesis, which combines 
the IGWO algorithm with a better convergence factor and 
the DE algorithm with a dynamic scaling factor with the 
help of a DE crossover operator. The initialization of a 
arbitrary vector of population size “Np” with dimension “d” 
under boundary conditions is the first step in the 
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IGWO-MGA method. Where ‘d’ denotes the problem 
dimension or the number of variables in the problem, and 
this random vector is referred to as the target vector, which 
can be described as shown below:- 
| |=                                          (28) 
where  {1,2, 3…Np}, and � is the current value of iteration 
and each individual can be calculated as follows: 

+ rand (0,1)*(                                  (29) 
where ub, lb are the upper bound and lower bound vectors 
with d individuals respectively. The same way as in IGWO, 
the three best results in IGWO-MGA are kept as alpha 
solutions from the target vector. Succeeding the saving of 
the results, the target vector is exposed to a mutation in a 
manner like the MGA technique. In the suggested algorithm, 
the donor vector  is generated from the target vector  using a 
DE/best/1 mutation approach with a dynamic scaling 
factor ′, which offers more arbitrariness in the initial stages, 
preventing the algorithm from dropping into a local 
optimum, while the value of ′ decreases in the final stages, 
boosting the algorithm's convergence speed. So, the donor 
vector can be stated as follows: -  

                          (30) 
where alpha, is the α solution or best solution as far and  are 
the randomly selected solution from the target vector 
and F’ can be expressed as follows: 

; k                                                        (31) 

IGWO's searching ability is primarily determined by the 
vectors A and , where  is a randomly generated vector 
ranging from 0 to 2, the wolves favor exploration 
if  exploitation and  plays no role in IGWO's convergence 
speed. Now, the only vector that is important in 
convergence, but the value of  is determined by the 
convergence factor, and the value decreases linearly from 2 
to 0 over the course of iteration. We need to adjust the 
convergence factor to enhance the speed of the algorithm as 
shown in the equation below: - 

; k                                                      (32) 

Using this better convergence factor, the improved 
placement of the wolves can be calculated on the foundation 
of the position of the greatest wolves. Let us consider the ith 
position vector of wolves in the tth iteration 
as  which can be calculated using 
equation. The two vectors are combined using a binomial 
crossover operator to generate a position vector for the next 
iteration. The new location vector can be defined as follows: 

             (33) 

 
Research procedure 
 

1.6 Research procedure 
a. The objectives of this will be realized as follows: 
b. An objective function based (base case, without FACTS) 

for maximization total transfer capability as the 
optimization problem will be formulated and solution 
derived 

c. Singular Modified Genetic Algorithm and Improved Grey 
Wolf Optimization to solve the objective function, 
separately, via optimal location and sizing of FACTS 
devices will be developed  

d. Hybrid Genetic Algorithm and Improved Grey Wolf 
Optimizer Algorithm will be developed and used to 
solve the function for maximizing power transfer 
capability while observing the voltage profiles and loos 
reduction  

e. Hybrid Improved Grey Wolf Optimizer Algorithm and 
Genetic Algorithm with FACTS model above will be 
utilized to carry out simulations and evaluate 
effectiveness of model on improvement of power 
transfer capability  

f. The results will be assessed and effects of individual 
FACTS devices compared to each other for the four 
system parameters under consideration 

g. The proposed test networks will be the standard IEEE 30 
bus test system 

h. Simulation will be carried out in MATLAB 
 
2. RESULTS AND DISCUSSION 

 
2.1 Results from the optimal power flow (Base case, 

without optimized FACTS) 
Table 1 shows the optimal load flow result, the total real 
power loss is 17.53MW, reactive power losses 
(20.92MVAR), TTC (240.26MW) and total system load of 
283.4MW for the power flow without optimized FACTS. 
The power flows from send end bus to receiving buses are 
generally with limits apart from power flow from bus 1 to 
bus 2. 
Table 1 

Optimal Power flow Solution by Newton Raphson 
Power-Loss (MW)  17.53 
Reactive-Loss (MVAR) 20.92 
Total System Load (MW) 283.4 
Total Transfer Capability 
(MW)  

240.26 

  
2.2 OPF with GA-tuned UPFC 
Optimization results  
The optimized values for GA-tuned UPFC are indicated in 
the table 2 below: -   
Table 2 

Parameter      Values  

Voltage UPFC (PU)    :              1.01     and    1.03 
Angle UPFC (R)      :              -0.01   and      0.54 

Location UPFC (Bus)      :         Bus 1 and Bus 8 

Optimal NR Load flow Solution with GA-tuned UPFC  
Table 3 shows the optimal load flow result; the reactive 
power losses are 15.29MVAR. The power flows from send 
end bus to receiving buses are generally with limits apart 
from power flow from bus 1 to bus 2 where the loss load has 
reduced to 41.735MW from 43.143MW (a difference of 
1.408MW).  
 
Table 3: Newton Raphson Load flow Solution     
   
                   Newton Raphson Load flow Solution    

  Newton Raphson Load flow Solution     
Power-Loss (MW)            16.75 
Reactive-Loss (MVAR)     15.29 
Total System Load (MW) :     283.4 
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Total Transfer Capability 
(MW)  

241.66 

 
2.3 OPF with GA-tuned TCSC 
Optimization Results     
The optimized values for MGA-tuned TCSC are indicated in 
the table below: -   
Table 4 

 
 
 
 
 
 

Optimal NR Load Flow Solution for GA-tuned TCSC 
Table 5 shows the optimal load flow result; the total reactive 
power losses are 19.53MVAR. The power flows from send 
end bus to receiving buses are generally with limits apart 
from power flow from bus 1 to bus 2 where the loss load has 
reduced to 38.182 MW from base value of 43.143MW (a 
difference of 4.961MW). 
 
Table 5 
Newton Raphson Load flow Solution for GA-tuned 
TCSC 
Power-Loss (MW)    17.5 
Reactive-Loss (MVAR)          19.53 
Total System Load (MW)   283.4 
Total Transfer Capability (MW)  245.22 

 
2.4 OPF with IGWO-tuned UPFC 
Optimization results  
Table 6 below show the optimization results for 
IGWO-tuned UPFC  
 
Table 6: Optimization results  
Parameter  Values  
Voltage UPFC () 1.04           1.05 
Angle UPFC (R) -1.08         -0.71 
Location UPFC (Bus) Bus 1 and Bus 8  
 
Optimal NR Load flow Solution for IGWO-tuned UPFC 
Table 7 shows the optimal load flow result; the reactive 
power losses are 15.14MVAR. The power flows from send 
end bus to receiving buses are generally with limits apart 
from power flow from bus 1 to bus 2 where the loss load has 
reduced to 41.353MW from base value of 43.143MW (a 
difference of 1.790MW). 
 
Table 7: Newton Raphson Load flow Solution    
Newton Raphson Load flow Solution    

Parameter  Values  

Power-Loss (MW)           17.36 

Reactive-Loss (MVAR)    15.14 
Total System Load (MW)   283.4 
Total Transfer Capability 
(MW)    242.05 

 
OPF with IGWO-tuned TCSC 

Optimization results  
Table 8 below show the optimization results for 
IGWO-tuned TCSC  
Table 8: Optimization results 
  

Parameter  Values  

Reactance TCSC (PU) (p.u.) 
0.015    and      
0.0015 

Location TCSC (Line) 
 Line 2     and   Line 
4 

 
Optimal NR Load Flow Solution for IGWO-tuned TCSC 
Table 9 shows the optimal load flow result, the total real 
power loss is 17.32MW, reactive power losses 
(17.62MVAR), TTC (246.11MW) and total system load 
remained unchanged at 283.4MW for the power flow with 
the application of IGWO-tuned TCSC FACTS controller. 
The power flows from send end bus to receiving buses are 
generally with limits apart from power flow from bus 1 to 
bus 2 where the loss load has reduced to 41.353MW from 
base value of 43.143MW (a difference of 1.7.743MW). 
 
Table 9: Newton Raphson Load flow Solution    

Newton Raphson Load flow Solution    

Parameter  Values  

Power-Loss (MW)  17.32 

Reactive-Loss (MVAR)       17.62 

Total System Load (MW)   283.4 
Total Transfer Capability 
(MW)   

 246.11 

 
2.5 OPF with Hybrid MGA and IGWO-tuned UPFC 
Optimization results 
Table 10 below show the optimization results for Hybrid 
MGA and IGWO-tuned UPFC 
 

Table 10:  Optimization results 
Optimization Results 
Voltage UPFC (p.u.)    :             1.03      and      1 
Angle UPFC (R) :               -0.51     and   -0.65 
Location UPFC (Bus)      :         Bus 30 and Bus 1 

 
Optimal NR Load flow Solution for Hybrid GA and 
IGWO-tuned UPFC 
 
Table 11 shows the optimal load flow result, the total real 
power loss is 16.54 MW, reactive power losses 
(14.53MVAR), TTC (243.91MW) and total system load 
remained unchanged at 283.4MW for the power flow with 
the application of Hybrid MGA and IGWO-tuned UPFC 
FACTS controller. The power flows from send end bus to 
receiving buses are generally with limits apart from power 
flow from bus 1 to bus 2 where the loss load has reduced to 
41.281MW from base value of 43.143MW (a difference of 
1.6506MW). 
 

Table 11: Newton Raphson Load flow Solution 
Newton Raphson Load flow Solution 
Power-Loss (MW)                 16.54 

Parameter   Values  

Reactance TCSC (p.u.)    0 and 0.02 

Location TCSC (Line)   40 and 4 
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Reactive-Loss (MVAR)      14.53 
Total System Load (MW)        283.4 
Total Transfer Capability 
(MW) 

243.91 

 
2.6 OPF with Hybrid GA and IGWO-tuned TCSC 
Optimization results 
Table 12 below show the optimization results for Hybrid 
MGA and IGWO-tuned TCSC 
 
Table 12: Optimization results  

Parameter   Values  
Reactance TCSC (p.u.):                  0.02            0.02 

Location TCSC (Line):               Line 4   and Line 2 
 
Optimal NR Load flow Solution for Hybrid GA and 
IGWO-tuned TCSC 
 
Table 13 below shows the optimal load flow result, the total 
real power loss is 17.52MW, reactive power losses (17.92 
MVAR), TTC (250.8 MW) and total system load remained 
unchanged at 283.4MW for the power flow with the 
application of Hybrid GA and IGWO-tuned TCSC FACTS 
controller. The power flows from send end bus to receiving 
buses are generally with limits apart from power flow from 
bus 1 to bus 2 where the loss load has reduced to 32.6 MW 
from base value of 43.143MW (a difference of 10.543MW). 
 
Table 13: Newton Raphson Load flow Solution 

Newton Raphson Load flow Solution 
Power-Loss (MW)                 17.52 
Reactive-Loss (MVAR)      !7.92 
Total System Load (MW)        283.4 
Total Transfer Capability 
(MW) 250.8  

 
2.7 Assessment of the comparative effects of the hybrid 

optimization technique using UPFC and TCSC 
FACTS for Reactive Power Losses  
 

The figure 14 below shows the reactive power for different 
optimization techniques: -  
 
Figure 14: Reactive power for different optimization 
techniques 

 
CONCLUSION 

For the base case solution without FACTS devices, the 
reactive power losses were 20.92MVAR, for solution with 
MGA-tuned FACTS controller the reactive power losses 
were 15.29MVAR, for MGA-tuned TCSC the reactive 
power losses were 19.53MVAR, for IGWO-tuned UPFC the 
reactive power losses were 15.14MVAR, for IGWO-tuned 

TCSC the reactive power losses were 17.62MVAR, for the 
solution with hybrid MGA and IGWO-tuned UPFC 
controller the reactive power losses were 14.53MVAR and 
for the solution with hybrid MGA and IGWO-tuned TCSC 
the reactive power losses were 17.52 MW.  The novel 
Hybrid MGA and IGWO-tuned TCSC FACTS controller 
CPF solution   for reduction of reactive power losses 
solution was 17.52MVAR, a reduction of 3.4MVAR from 
the base case solution of 20.92MVAR.  There was reduction  
of  6.39MVAR for the solution with Hydrid MGA and 
IGWO-tuned UPFC FACTS controller from the reactive 
power losses’  base solution, a reduction  of 3.3MVAR from 
IGWO-tuned TCSC FACTS controller from the reactive 
power losses’ base case solution, a reduction  of 5,78MVAR 
from IGWO-tuned UPFC FACTS controller from the 
reactive power losses’ base solution and a reduction of 
1.39MVAR from MGA-tuned TCSC FACTS controller 
from the reactive  power losses’ base case solution of 
20.92MVAR. The reduction of reactive power loss with 
MGA-tuned UPFC FACTS controller from the base reactive 
power losses’ solution was 5.63MVAR. This makes the 
reactive power losses’ solution with Hybrid MGA and 
IGWO with UPFC tuned FACTS controllers the most 
superior solution to all solution accomplished and tested in 
this research. It imperative to note that the hybrid technique 
has brought out the inherent strengths of the FACTS 
controllers applied. For reduction of reactive power losses, 
similar to the performance for real power losses, UPFC is 
more superior to TCSC for all scenarios. Hence for power 
system networks with reactive power losses’ problems, 
UPFC is more recommended for application than TCSC. In 
addition, the performance of MGA with tuned UPFC 
FACTS controller (reduction of 0.78MW) optimization 
techniques has proven to be better than the IGWO with 
tuned UPFC FACTS controller (reduction of 0.78MW) for 
reduction of reactive power losses. Finally, there significant 
reduction of reactive power losses for all optimization 
techniques applied compared to the values observed for 
reduction of real power losses.   
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